Markov Random Fields with E cient Approximations
نویسندگان
چکیده
Markov Random Fields (MRF's) can be used for a wide variety of vision problems. In this paper we focus on MRF's with two-valued clique potentials, which form a generalized Potts model. We show that the maximum a posteriori estimate of such an MRF can be obtained by solving a multiway minimum cut problem on a graph. We develop eecient algorithms for computing good approximations to the minimum mul-tiway cut. The visual correspondence problem can be formulated as an MRF in our framework; this yields quite promising results on real data with ground truth. We also apply our techniques to MRF's with linear clique potentials.
منابع مشابه
Weighted Median Predictive Techniques for Coe cient Estimation in NonGaussian Markov Random Fields
NonGaussian Markov image models are e ective in the preservation of edge detail in Bayesian formulations of restoration and reconstruction problems. Included in these models are coe cients quantifying the statistical links among pixels in local cliques, which are typically assumed to have an inverse dependence on distance among the corresponding neighboring pixels. Estimation of these coe cient...
متن کاملHidden Markov Random Field Model Selection Criteria Based on Mean Field-Like Approximations
Hidden Markov random fields appear naturally in problems such as image segmentation, where an unknown class assignment has to be estimated from the observations at each pixel. Choosing the probabilistic model that best accounts for the observations is an important first step for the quality of the subsequent estimation and analysis. A commonly used selection criterion is the Bayesian Informatio...
متن کاملINRIA Research Project Proposal mistis Modelling and Inference of Complex and Structured Stochastic Systems
5 Domains of research 10 5.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1.1 Learning and classification techniques . . . . . . . . . . . . . . . . . . 11 5.1.2 Taking into account the curse of dimensionality. . . . . . . . . . . . 12 5.2 Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2.1 Triplet Markov Fields f...
متن کاملMaximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
Two new implementations of the EM algorithm are proposed for maximum likelihood ®tting of generalized linear mixed models. Both methods use random (independent and identically distributed) sampling to construct Monte Carlo approximations at the E-step. One approach involves generating random samples from the exact conditional distribution of the random effects (given the data) by rejection samp...
متن کاملLoss networks and Markov random fields
This paper examines the connection between loss networks without controls and Markov random field theory. The approach taken yields insight into the structure and computation of network equilibrium distributions, and into the nature of spatial dependence in networks. In addition, it provides further insight into some commonly used approximations, enables the development of more refined approxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998